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The upside-down simple harmonic oscillator system is studied in the contexts of 
quantum mechanics and classical statistical mechanics. It is shown that in order 
to study in a simple manner the creation and decay of a physical system by way 
of Gamow vectors we must formulate the theory in a time-asymmetric fashion, 
namely using two different rigged Hilbert spaces to describe states evolving 
toward the past and the future. The spaces defined in the contexts of quantum 
and classical statistical mechanics are shown to be directly related by the 
Wigner function. 

1. INTRODUCTION 

In this work we will study the motion of a particle subject to an upside- 
down simple harmonic oscillator potential 

1 
V (q) = - 2  mt~ (l.  1) 

in the contexts of quantum mechanics and classical statistical mechanics. 
The aim of the paper is threefold: 

1. We solve the problem using a nonconventional technique. In fact, we 
find that the evolution of the system can be entirely expressed in terms of 
idealized states that decay or grow exponentially (usually called Gamow 
vectors). In order to give mathematical meaning to these states we are forced 
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to work in the framework of a rigged Hilbert space (RHS). In quantum 
mechanics the Gamow vectors are then defined as generalized eigenvectors 
of the Hamiltonian operator with complex eigenvalues, these being the poles 
of the scattering matrix when it is extended to the complex plane. The Gamow 
vectors can be used in 'generalized spectral expansions' similar to those 
found by the Gel 'fand-Maurin theorem, but in order to use them we have 
to define two different test function spaces, which we shall call qb. and ~_ .  
A similar result is found in classical statistical mechanics. 

2. We will prove that with this mathematical structure we have set the 
basis to introduce a time asymmetry in the theory. Let us explain this further. 
The vectors in ~+ can be expanded as linear combinations of  the decaying 
Gamow vectors, while the vectors in q b  can be expanded as linear combina- 
tions of the growing Gamow vectors. Since every physical state (either 
quantum or statistical mechanical) must decay both toward the future and 
the past, it is mathematically sound to represent the state of a physical system 
when it evolves toward the future (i.e., from an initial condition) by a vector 
4). e qb+ and the state a system when evolving toward the past (i.e., going 
to a final condition) by a vector t~_ E qb_. When considering the scattering 
of particles by the potential barrier, this division between initial states and 
final states is easily explained, but we think that it is useful for studying 
other phenomena, such as the decay toward the equilibrium position. Since 
both spaces qb§ and qg_ are dense in the corresponding Hilbert space ~ ,  at 
this stage there are no empirical results that could help us decide if the 
conventional representation of the state of a physical system by a vector in 

is better than the representation of the same system by a vector in qb. or 
qb_. Both representations give the same empirical results, so both are, in a 
sense, correct. The difference is at the mathematical level (in the topologies 
used, etc.) and so we can use the representation we find more suitable to the 
description of the physical facts. 

Now, by selecting two different mathematical structures to represent a 
physical system when evolving toward the future and toward the past we have 
introduced the basis for a time asymmetry in the mathematical description of 
time evolution. In fact, there are only two causes for asymmetry in nature: 
either the laws of nature are asymmetric or the solutions of the equations of 
the theory are asymmetric. For example, the laws governing the weak interac- 
tion are asymmetric, while the solutions of the theory are asymmetric in the 
case of spontaneous symmetry breaking. 

Time asymmetry is not an exception. Thus, if we want to retain the 
time-symmetric laws of  nature the only way to explain the time asymmetry 
of the universe and its subsystems is to postulate that the space of solutions 
is not time-symmetric, namely, to adopt the second cause for asymmetry. So 
the proper way to solve the problem is simply to define a realistic time- 
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asymmetric space of admissible physical solutions alp+, namely to restrict the 
space of initial conditions. If/~ is the time inversion operator, this space will 
be time-asymmetric whenever K: qb+ ~ d~_, namely time inversion changes 
the physically admissible solutions in qb+ into a space of inadmissible solutions 
d~_ different to the previous one. If ~ is the usual space of solutions of the 
theory (Hilbert space in quantum mechanics or Liouville space in classical 
statistical mechanics) and we select qb+ properly, then mathematically speak- 
ing we have introduced a Gel'fand triplet ~b§ C ~ C d~ ~.. 

A Reichenbach branched system is perhaps the most realistic model for 
an irreversible universe, i.e., a set of irreversible processes such that each 
one begins in an unstable state produced by another member of the system 
and it eventually ends in an equilibrium state (Reichenbach, 1956). This set 
of processes, all of them beginning in a nonequilibrium state, defines a global 
arrow of time in the universe. The problem is that the whole branch system 
must begin in a global unstable initial state, which has no explanation. This 
unstable initial state would be the initial cosmological state of the universe. 
It is qualitatively shown in Davies (1994) that the expansion of the universe 
can be the agency that produces this initial unstable state. Using the method 
of this paper, we have found the same explanation, but in a quantitative way 
(Aquilano and Castagnino, 1996), endowing the universe with a (global) 
space of admissible solutions ~§ Therefore, we think that the time asymmetry 
is not given by the system itself, namely our upside-down oscillator; instead, 
it must be connected with the global arrow of time of the universe. In fact, 
our system is really a member of the Reichenbach branch system in such a 
way that the unstable initial condition of our oscillator is necessarily produced 
by another member of the branch system. Thus, as an initial condition is 
given, it is admissible only if it belongs to a (particular) space qb§ Since the 
Rigged Hilbert space and the conventional Hilbert space formulations are 
equally correct, we can select the space better qualified to define time 
asymmetry. 

3. As this procedure has been applied in the past to some unstable 
quantum mechanical systems [simple potential scattering problems (Bohm 
and Gadella, 1989) and Friedrichs' model (Antoniou and Prigogine, 1993)] 
and chaotic classical statistical systems [Renyi maps (Antoniou and Tasaki, 
1992) and the baker's transformation (Antoniou and Tasaki, 1993)] in this 
paper we extend this technique to the simplest unstable system: the upside- 
down harmonic oscillator. Furthermore, we show that the two sets of spaces 
defined in quantum mechanics and classical statistical mechanics are con- 
nected in a simple manner. This is the first result of this kind that we know of. 

The organization of the paper is as follows. In Section 2 we give the 
principal properties of the rigged Hilbert space formulation of quantum 
mechanics. We define the regular state space and the generalized state space 
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and we define generalized eigenfunctions. In Section 3 we work out the 
motion of a particle subject to the potential (1.1) in classical mechanics, 
introducing the canonical variables we shall use throughout the paper. In 
Section 4 we study the same problem in the context of quantum mechanics. 
We define the growing and decaying Gamow vectors and using these objects, 
we also define the two RHS that represent states evolving to the future and 
states evolving to the past. In Section 5 we undertake the same task in the 
context of classical statistical mechanics. We find the "statistical Garnow 
vectors," namely generalized density functions in a state space that represent 
idealized growing and decaying states. Once again, using these objects, we 
define the two RHS that represent states evolving toward the past and toward 
the future. In Section 6 we show that the structures defined in Section 4 and 
5 are connected by the Wigner function. Finally, we present our conclusions 
in Section 7. 

2. THE RIGGED HILBERT SPACE FORMULATION OF 
QUANTUM MECHANICS 

In the traditional (von Neumann) formulation of quantum mechanics, a 
physical state is represented by a vector in a Hilbert space ~ and physical 
magnitudes (observables) by linear self-adjoint operators acting in it. We will 
deal in this paper with the unidimensional motion of a particle in a potential 
field, so the Hilbert space in which we should work is isomorphic to L2(R). 
More precisely, in the position ([q)) representation the particle's state is 
represented by a normalized wavefunction tb(q) E L2(R) whose modulus 
squared gives the probability density of finding the particle in the position 
q. Observables are then represented (in this representation) by self-adjoint 
operators in L2(R). 

This formulation contains certain idealizations, since once we interpret 
the wavefunction as a probability amplitude, the only physical requirement 
is that it must be square-integrable. But a Hilbert space is a complete topologi- 
cal space with respect to a particular topology, namely the one obtained from 
its scalar product. The assumption that every vector in this Hilbert space 
represents a physically realizable state cannot by any means be justified by 
empirical facts, since a topology (infinite limits, continuity) has no physical 
meaning. It is just a mathematical idealization with which a theoretical physi- 
cist works in order to formulate a theory. So we can take another mathematical 
idealization and formulate a theory in a different mathematical environment. 
For instance, we can take another topological space, which is itself a subspace 
of the Hilbert space, and associate with the vectors in such a space the states 
of the physical system. 
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This is what the rigged Hilbert space (RHS) formulation of quantum 
mechanics does (Bohm and Gadella, 1989). To define a RHS we take a 
topological vector space (endowed with a nuclear topology) ~ with a continu- 
ous scalar product defined in it. As we shall see, when the Hilbert space is 
the space of square-integrable functions, the test function space ~b is chosen 
as the set of functions of fast decrease or Schwarz functions 5 ~ ~ if(R) or, 
in other models, some subspace of it, e.g., incoming or outgoing states 
subspaces. By completing the vector space with the topology given by the 
scalar product, we get a Hilbert space ~ such that �9 C ~ .  If we consider 
the set of all antilinear functionals continuous with respect to the nuclear 
topology, we get another vector space called the dual space of qb and denoted 
qb • We will denote the value of the functional F ~ q b• on the vector qb 

by (qbIF) and its complex conjugate by (Flqb). Due to Riesz's lemma, the 
dual space of ~ is ~ itself, so we get (using the fact that the nuclear topology 
is stronger than the Hilbert space topology) the Gel 'fand triplet 

C ~ C ~ x  (2.1) 

We associate the vectors in the space @ with the physical states of the 
system under consideration; thus it is usually called the regular state space. The 
observables are associated with continuous (essentially) self-adjoint linear 
operators in qb. 

This formulation has some advantages over the conventional one. The 
first advantage is that in the traditional formulation of quantum mechanics 
a vector is a class of Lebesgue square-integrable functions differing in a set 
of measure zero, while in the RHS formulation a vector is usually just one 
continuous and infinitely differentiable function. 

The second advantage is that every observable is well defined, since 
they are continuous in ~. This means, in particular, that even when the 
operator is unbounded in ~ ,  it is well behaved in qb, which is contained in 
the domains of all operators of interest. In the case we will be studying, these 
include the position and momentum Hamiltonian operators. 

The third advantage is that every essentially self-adjoint continuous 
linear operator in a RHS has a complete set of generalized eigenvectors in 
~ x  (the generalized state space) with their eigenvalues in the spectrum of 
the operator, a result proved by Gel'fand and Maurin (Bohm and Gadella, 
1989; Gel 'fand and Shilov, 1964). 

By a generalized eigenvector of an operator A in a RHS we mean a 
functional IFx) ~ ~•  such that 

(AtOolF• = k(d01Fx) V qb e �9 (2.2) 

Since this is a generalization of the definition of an eigenvector in finite- 
dimensional vector spaces, the number k is called a generalized eigenvalue 
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corresponding to the eigenvector IFx). What the Gel'fand-Maurin theorem 
states is that given an operator, the set of generalized eigenvectors spans 
the regular vector space qb. More precisely, if A is the spectrum of the 
aforementioned operator A, then the scalar product between two vectors qb, 

e ~ can be expressed as 

(+' *) = fa dix(X) (F• (2.3) 

where Ix is a certain integration measure. We see then that in the  RHS 
formulation of quantum mechanics, Dirac's notation is fully justified. Even 
though the generalized eigenvectors do not belong to the Hilbert space, they 
are defined as antilinear functionals in qb x. In the same way, the operator 
itself can be expressed as a linear combination of the same generalized 
eigenvectors, namely 

= fa dix(h) hi)t) (hi (2.4) 

There is one more advantage that this formulation has over the traditional 
one: we can define generalized eigenvectors of an essentially self-adjoint 
operator with eigenvalues that do not belong to the (Hilbert space) spectrum 
of the operator. In the general case, such a spectrum is a closed subset of 
the real line, but, as we shall show below, we can find in some cases eigenvec- 
tors with complex eigenvalues. This will allow us to define Gamow vectors, 
namely generalized eigenvectors of the Hamiltonian operator with nonzero 
imaginary eigenvalues. As we shall see, this fact implies that the evolution 
of these vectors is exponential, either growing or decaying, depending on 
the sign of the imaginary part of the eigenvalue. 

These new generalized eigenvectors are useful to study the temporal 
evolution of the regular vectors representing physical states, if we define the 
RHS so that we can find new expansions like (2.3) containing them. We will 
find that in order to do so, we must define two different RHSs, which we 
shall call ~+ and ~_.  The first one will correspond to the representation of 
physical systems when they evolve toward the future, since its vectors will 
be expressed in terms of the decaying Gamow vectors, and thesecond one 
will correspond to the representation of physical systems when they evolve 
toward the past, since they will be expressed in terms of the growing (or 
decaying toward the past) Gamow vectors. 

To finish this section, we will mention the different rigged Hilbert spaces 
with which we will work in this paper (Gel'fand and Shilov, 1964). The first 
one is the one constructed from the space of Schwarz class functions 5 ~ 
composed of all infinitely differentiable functions of a real variable such that 
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they, together with all their derivatives, vanish at infinity faster than the 
inverse of any polynomial. The RHS obtained is 5 ~ C L2(R) C 5 ~ In this 
case, the functionals in b ox are called tempered distributions. This is the RHS 
most theoretical physicists work in, since in it the position and momentum 
operators are continuous (Bohm and Gadella, 1989). 

The other two RHSs we shall use are constructed from subspaces of 5O, 
so that this last property is maintained. These subspaces are the space ~s of 
infinitely differentiable functions of a real variable with compact support and 
the space ~ of Fourier transforms of functions in ~ ,  which is isomorphic to 
the space of entire functions of fast decrease. The RHS we obtain are then 
~ C L2(R) C ~ x  and ~ C L2(R) C ~x .  

3. T H E  CLASSICAL UPSIDE-DOWN OSCILLATOR 

The system we are going to study is one of the simplest unstable ones, 
namely the motion of a particle in the presence of a potential of the form 
(1.1). The Hamiltonian function of the system is H = p 2 / ( 2 m )  - t mto2q2.  

As in the study of the harmonic oscillator, it is convenient at this point 
to make the dynamical variables dimensionless. In order to do that, we must 
take the natural scales of length, momentum, and time defined through the 
physical parameters available: m, h and to (we include h since we will deal 
in the next section with the quantum case). These scales are, respectively, 
~ ,  ~ ,  and l/to, so we are making the transformations 

,# q ,--. q, p ,--. ------~ p (3.1) 
~/mton 

and 

1 
H ~ ~ H, t ~ tot (3.2) 

The relation between the Hamiltonian and the dimensionless q and p 
variables is 

1 
H = ~ (p2 _ qZ) (3.3) 

To solve the equations of motion, it will be helpful throughout the paper 
to work in another pair of canonical variables 

1 1 
v = - ~ ( p  + q), u = ~ ( p -  q) (3.4) 

obtained through the generating function F ( q ,  v) = t 2 + , f -2qv  - i q2 --~ v 7" �9 
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Expressed in these new variables, the Hamiltonian reads 

H =  vu (3.5) 

and thus the equations of motion are 

dv OH du Oh 
~) - - - v ,  ~i - - = - u  ( 3 . 6 )  

dt Ou dt  Ov 

These equations are uncoupled and they have as solutions for any initial 
condition v0, u0 

v = voe', u = Uo e - t  (3.7) 

In phase space, the trajectories of the particles are hyperbolic and the 
v and u axes are the corresponding asymptotes. The point v = 0, u = 0 (or 
q = 0, p = 0) is a point of unstable equilibrium. If/4o = VoUo r O, then the 
particle decays (gets away from the barrier region) both toward the past and 
the future. The directions parallel to the v axis will be called "dilating fibers," 
while those parallel to the u axis will be called "contracting fibers." 

4. THE QUANTUM UPSIDE-DOWN OSCILLATOR 

4.1. The Iv) and [u) R e p r e s e n t a t i o n s  

As we saw in the previous section, the evolution of the system is 
expressed in a simple way when we use the variables v and u. In quantum 
mechanics, a canonical transformation is associated with a change in represen- 
tation. Instead of using the representations Iq) and Ip) of generalized eigen- 
functions of 1) and/5, we will use the representations Iv) and lu) of generalized 
eigenfunctions of the operators ~' and t), defined through 

1 1 
I~' = - ~  (/5 + ~)), 0 = - ~  (/5 - ~)) (4.1) 

Since these operators are the quantum representations of canonically 
conjugate variables, they satisfy the commutation relation 

[I~', f~r] = i (4.2) 

The spectrum of these operators is the whole real line (Cohen-Tannoudji 
et al., 1977) and the transformations from the Iq} representation to the Iv) or 
lu) representations are given by 
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(qlv) = (2rr2) - 1/4 ei(~f2vq-q2/2-v2/2) 
(qlu) = ( -  2rr z)- lm ei(X/~uq+q212+ u2/2) 

Due to (4.2), we get the relation 

1 (vlu) = ~ e i~v 

(4.3) 

(4.4) 

(4.5) 

4.2. Eigenfunctions of the Harniltonian 

4.2.1. Real Eigenvalues 

The Hamiltonian of the system is 

l t 5 2 _  1 02  = 1 / : /=  ~ ~ ~ (~'0 + 0V) (4.6) 

namely, the symmetric version of (3.5). The eigenvalue equation for the 
eigenfunctions of this Hamiltonian with eigenvalue ~ in the Iv) and lu) 
representations reads 

v ~vv qb~(v) = i t  - qb~(v), u ~uu ~(u)  = - i t  - ~ (u )  (4.7) 

Formally, the solutions of these equations are 

+~(v) = av i~-1/2, +~(u) = ~u -i '-l/2 (4.8) 

but care must be taken, since these expressions are only defined for positive 
values of v and u, respectively (in fact, as we have seen in Section 2, they 
are not functions, but distributions). 

Actually, there are two linearly independent solutions of equations (4.7) 
for each value of e, due to the degeneracy of the Hamiltonian. These indepen- 
dent solutions can be chosen as (Bollini and Oxman, 1993) 

1 (vl~ + (v)) = ~ 0(v)v i'-~/2, 
, / e r r  

o r  

( u l e  + (u) (  - 

1 
(vie - (v)) = ~ 0 ( - v ) l v l  i~-~2 

(4.9) 

I 1 O(u)u -,~-,,2, ( . ~ ,  - ( . ) )  = ~ 0 ( - . ) ~ . ~  -'~-1'2 

(4.10) 

The generalized functionals (4.9) represent the idealized scattering out- 
going states, representing particles leaving to the left and the right, respec- 
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tively, while the generalized eigenfunctions (4.10) represent the scattering 
incoming states, representing particles entering the scattering region from 
the left and the right, respectively (Balazs and Voros, 1990; Barton, 1986). 
Both of these sets of solutions form complete and orthonormal sets in b o, in 
the sense discussed in Section 2. 

By calculating the scalar product between the incoming states and the 
outgoing states, we obtain the scattering matrix, whose coefficients are in 
this case of the form (Bollini and Oxmar, 1993; Barton, 1986) 

where the f~(e )  are entire functions of e. 

4.2.2. Eigenfunctions with Complex Eigenvalues 

As can be seen from the above formula, the scattering matrix when 
extended to the complex plane has an infinite number of imaginary poles 
located at zn = -i(n + 1/2), where n is a nonnegative integer. The Gamow 
vectors will have as generalized eigenvalues these numbers or their complex 
conjugates. Instead of taking the conventional way to obtain the expressions 
for these Gamow vectors [namely by analytical extension of the scalar product 
to the complex plane (Bohm, 1986)], we will take a shortcut and find them 
in a heuristic way. 

We will consider the solutions of the eigenvalue equations (4.8) when 
taking ~ = zn in the first one and ~ = ~ in the second one. Then we get 
the functionals 

(vln) = v", (utri) - (-i)----~ u" (4.12) 

where the multiplicative factors have been selected so that (4.14) below 
applies. Transforming with (4.5), we get 

(uln) = .r (vlti) - ( -  1)" n! ~")(v) (4.13) 

It is clear that these functionals are tempered distributions. By direct 
calculation, we can demonstrate the biorthonormality of the sets {In)} and 
{Ir~)}, namely that 

(n'lri) = (r~ln') = ~,,,, (4.14) 

We will show now that In) is indeed a generalized eigenfunction of 
with complex eigenvalue z,, namely that (/2/+In) = z,,(d~ln), Vln) e b ~ 
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We have 

( [ = I + l n ) = 2 d v [ i  ( v d+(v) + 1 +--~)] V n d v  -2 

and integrating by parts in the right-hand side, we get 

I+= { 1 } ( 2 )  (/'1+in) = - i  dv +(v)(n + 1 ) v " - ~  = - i  n + (+In) 

In a similar fashion, we can demonstrate that [g) is a generalized eigen- 
function of/2/with eigenvalue ~ = i(n + 1/2). It is 

)] dO(v) + - ~  (-1)" ~(n)(v ) 
(/?/+lti) = dv i v dv n! 

and using 

- -  V = V ~  q'- t l - -  

we get (/t+1~) = ~n(+l~). 
Since In) and I~) are generalized eigenvectors of /~/, their temporal 

evolution is easily calculated. In fact, we get 

e-ifttln) = e-(n+l/2)tln), e-ifltll~) = e(n+u2)qti) (4.15) 

showing that the Gamow vectors are indeed vectors that would represent 
idealized states that decay or grow in a perfectly exponential way. These 
functionals are more pathological (are "less physical") than the eigenfunctions 
of the Hamiltonian with real eigenvalues (4.9) or (4.10); they are clearly 
distributions and not regular functions and thus cannot represent by them- 
selves physical states. It will be shown, though, that they are useful in studying 
the temporal evolution of the regular states. 

To complete the presentation of these functionals, let us study their 
expression in the Iq) representation. In order to do that, we use (4.4) and get 

0 n 
(qln) = ot~e iq2/2 0u'---- ~ (ei(v~uq+u212))lu=O 

where a" is just a numerical factor. Now, using the formula Hn(z)= 
n n h2+2kz (3/Ok )(e- )Ix=0, where Hn(z) is the nth Hermite polynomial, we find 

that 

(qln) = Otneiq2/2 Hn(e-i'rr/4 q) (4.16) 
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In an analogous way, using (4.3), we get 

(qlr~) = ane-iq2/2nn(ei~/4q) (4.17) 

Restoring the variables' dimensions, we get 

~-~ pimo~q2/2h[4 : i ~  q) 
( q l n )  = Cneimc~ ( ~ q), (ql~) = vn- .-n~.V h 

If we compare these generalized states with the eigenstates of the har- 
monic oscillator with equal frequency and mass (Merzbacher, 1970), we can 
see that the former can be obtained from the latter by means of the transforma- 
tion to ~ - i to  in the case of  In) and the transformation to ,--, ito in the case 
of Iti). But these transformations applied to the potential of the harmonic 
oscillator turn it into the potential (1.1) and the same happens with the 
eigenvalues: they are transformed from discrete real eigenvalues to discrete 
imaginary ones. Once again we see (now in the Iq) representation) that these 
generalized eigenfunctions cannot represent physical states; when calculating 
the norm squared of these functions we obtain that they diverge in the limit 
lql ~ ~ as q2n. 

4.3. Generalized Expansions and the Regular Function Spaces @+ 
and ~ _  

We study now the use of the generalized functions (4.12) in generalized 
expansions. Our first step toward this end is taking qb such that (vide) = ~b(v) 

~0. Since this wavefunction is infinitely differentiable, we can define its 
Taylor expansion around v = 0 

~b(v) = ~] nt v~ = ~] (vln)(t~ld~) (4.18) 
n=O n=O 

The equality in this formula is restricted to the values of v in an interval 
on the real line, namely inside the radius of convergence of the series, so 
the utility of this expansion is rather limited. Only when considered in a 
scalar product will it prove really useful. 

Our second step is to define the test function spaces 

~P+ = {t~ E 'g/(vlt~) ~ ~} = {~ ~ ~l(ult~) ~ ~}  (4.19) 

dp_ = {~ ~ ~.l(vlt~) ~ 7~} = [qJ ~ ~/(ul+) ~ ~} (4.20) 

where ~C and ~ are the spaces introduced in Section 2. We can then construct 
two different RHS with these spaces, namely 

qb__. C ~ C �9 x+ (4.21) 
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Let us take do ~ ~b+; in this case the expansion (4.18) is valid for all 
values of v. Considering that In) is a generalized eigenfunction o f / 4  with 
eigenvalue zn and the definition (4.120, the time evolution of this vector is 
given by 

dO(v, t) = (vle-il:l'dO) = ~ e-~n+u2~'(vln)(~ldO) = e-t/2dO(ve -`, 0) (4.22) 
n = 0  

Since ~+ is a dense subspace in ~ ,  we get that (4.22) must be valid for 
any vector in ~ ;  this can be verified by direct substitution in SchrOdinger's 
equation. If we consider the Taylor expansion of a vector ~ in ~_  in the lu) 
representation, we get that in that representation the temporal evolution is 
given by ~(u, t) = et/2t~(ue ', 0). 

These two results can be seen as the fact that the wavefunction does not 
change its form with time; it just suffers a change in scale. If the wavepacket is 
initially concentrated in some value v0 (resp. u0), then it will be concentrated 
at time t in VO et (resp. uoe-t), namely, the center of the wavepacket follows 
the classical trajectory found in Section 3. This is a consequence of Ehrenfest's 
theorem, since the potential is quadratic in position. Quantum effects come 
from the broadening of the wavefunction in the Iv} representation and the 
narrowing of it in the lu} representation. 

Now, let us consider the scalar product between a vector do_ ~ q b  and 
a vector qJ+ ~ qb+, (do_, qj+) = f+_= dv dO_(v)~.(v). Since dO_(v) ~ ~K, it is an 
infinitely differentiable function of compact support; the integration limits 
can then be replaced by - a ,  a for some a. On the other hand, since ~+(v) 
is an entire function, the radius of convergence of its Taylor expansion around 
v = 0 is infinite, and so we have 

(dO_, d~+) = dv dO_(v) ~ (ril~+)v" (4.23) 
a n = 0  

The convergence of the series in the interval I - a ,  a] is uniform and, 
since the function qb_(v) is bounded in that interval, we can interchange the 
order of the summation and integration. Then we get 

(dO_, ~ + ) =  ~ (dO_ln)(ril~+) (4.24) 
n = 0  

We get a second expansion of this kind by taking the complex conjugate 
of this expression: 

(t~§ d)_) = ~ {~+lri)(nldO_) (4.25) 
n = 0  



2362 Castagnino, Diener, Lara, and Puccini 

This shows that a vector qb+ ~ cI)+ can be expanded (when acting as a 
functional in �9 _x) as Nb+) = ~ln)(ril~b+) and a vector qb_ E qb_ can be 
expanded as Iqb_) = Elff) (nlqb_). 

Let us now turn to the physical meaning of these RHS. As we have 
seen, if d~+ a ~+, the expansion (4.18) is valid for all values of v. This means 
that we can represent a state as an infinite sum of decaying states. Then, if 
we want to study the decay of a physical system, we can represent its initial 
condition by a vector ~b+ ~ ~+. If, on the other hand, we want to study the 
creation of a physical system, then by representing the final condition with 
a vector ~_ ~ q b  we can think of this process as the growth of a linear 
combination of  the exponentially growing states Ir~). 

In an experiment, we control the initial condition, which evolves toward 
the future, and then compare it with a final condition by means of a measure- 
ment; thus, the quantities of interest are of the form (@_, ~b+ (t)) = 
(~_le-&iqb+), which can be expanded as in (4.24) 

(~b_le-ifltlqb+) = ~ e-~ (4.26) 
n = 0  

It is evident from this formula that we can think that the initial condition 
is fixed and the final condition evolves to the past. The series in the 
formula converges always (for all values of  t) as we have seen, but it 
only has physical meaning for positive values of t. For long times, only 
the first term of the series makes a contribution and then we can take 
(t~_, qb.(t)) = e-t/2(+_lO)(Of~+), showing that in this regime the decay is 
effectively exponential, unless one of the coefficients (qb_10) or (01t~+) 
vanishes. We recover thus the lifetime already known from (Barton, 1986). 
We remind the reader that equations (4.24) and (4.26) are exact; there are 
no approximations in the series. In our system, unlike the one considered in 
Bohm and Gadella (1989), there is no background term; all the details of the 
evolution are found in the series expansions. 

Finally, let us consider time reversal in our formulation. From the inter- 
pretation we have given to the spaces qb. and ~b_, it seems that the time 
reversal operator should transform one of the spaces into the other, since it 
changes initial conditions into final conditions. This we shall show now. 

Wigner's time reversal operator is defined in the Iq) representation as 
the conjugation operator, namely 

/~: Iqb)~ Iqb') where qb'(q)= qb(q) (4.27) 

Let us take ~b ~ ~b§ Then we have 

2 TM /'+~ . 2 2 
(vl+) = ~b(v) - , ~  J-~o dqe,(-x/~vq+q /2+v /2)qb(q ) (4.28) 
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2 TM f +~ @'(U) = <U[~)') -- ~ .I-~ dqe-t(x/-2vq-q212-vz/2)~p(q) (4.29) 

By comparing (4.28) and (4.29), we get 

q~'(u) = e -i~/4 [+(v)]lv=-, (4.30) 

and considering (4.19) and (4.20), +'  ~ d~_, or 

/~: qb+ ~ ~ _  (4.31) 

The inverse relation can be proved in a similar way. 

5. THE UPSIDE-DOWN OSCILLATOR IN CLASSICAL 
STATISTICAL MECHANICS 

5.1. Generalized Eigenfunctions in Classical Statistical Mechanics 

In classical statistical mechanics, a state of a physical system is repre- 
sented by a density function p(v, u) that gives the probability density to find 
it in a given region in phase space. This density function must satisfy certain 
requirements to have a physical meaning. First of all, it must be a positive 
function, since probabilities must be positive. Second, it must be integrable 
over the entire phase space. Finally, we ask the further condition that it be 
square-integrable, since we want to calculate mean values of functions that 
will be themselves square-integrable functions. In this case, we work in a 
Hilbert space. Just as we did in quantum mechanics, we will formulate the 
classical statistical theory in a rigged Hilbert space rather than in a Hilbert 
space, thereby introducing a time asymmetry in the representation of physical 
states. This method has been applied before to simple chaotic problems 
(Antoniou and Tasaki, 1992, 1993). 

Let us consider the equation that gives the temporal evolution of the 
density functions, namely the Liouville equation 

i 0p = Lo (5.1) 
Ot 

where the Liouvillian operator is defined by 

= i(OH Op OH Opl 
Lp = i {H.  p} B a .  7 , ,  (5.2) 

Equation (5.1) is formally equivalent to the Schr~3dinger equation, so 
the solutions to this equation can be found in a similar way. The Liouvillian is 
an (essentially) self-adjoint operator in the Hilbert space of square-integrable 
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functions of  two real variables Le(p~2). We will find the generalized eigenfunc- 
tions of this operator that play a similar role as (4.13) did in Section 4. 

The Liouvillian operator is, in our case, Lp = i (u  Op/Ou - v Op/Ov).  

Taking v as the eigenvalue of/~ and proposing as a solution the product of  
a function of v by a function of u[p = V ( v ) U ( u ) ] ,  we get 

u U - I U  ' - v V - I V  ' = - i v  (5.3) 

It can be seen, then, that both terms on the left-hand side of  this equation 
must be constants, which we shall call m and n, respectively: 

u U - I U  ' = m ,  v V - I V  ' = n (5.4) 

We see that the equations for U and V are the same, so they will similar 
solutions. A solution obtained by direct integration is V = Av", U = B u  m, 

where A and B are arbitrary constants. We get then that p = Cv~u ' '  is a 
generalized eigenfunction of the Liouvillian operator with eigenvalue v = i 
(m - n). As we did in Section 4, let see what happens when we take m and 
n to be nonnegative integers; in this case the eigenvalue is imaginary. We 
will denote these eigenfunctions as 

1 
Im, n )  - v~u m, v --- i (m  - n )  (5.5) 

n!  m !  

They are merely polynomials in v and u. Once again, we find that these 
functions have no direct physical meaning; in fact, they do not satisfy any 
of the properties we asked for the physical density functions. 

Using the relation 

v~Cn+t)(V) = - - ( n  + l)~n~(v) 

we can see that V = ~e" ) ( v )  is another solution to (5.42) if we take n = - ( n '  

+ 1). We find then the following generalized eigenfunctions of the Liouvillian 
operator with their corresponding eigenvalues: 

Ith, f )  = ( - l )m+nS(m) (u )~(n ) (V) ,  V = - i ( m  - n )  (5.6) 

[m, f )  - ( -  1)-------~ 3r v = i (m  + n + 1) (5.7) 
m! 

Irh, n) - ( -  l)m ~(m)(/A)V n, V = - - i ( m  + n + 1) (5.8) 
n! 

These generalized eigenfunctions are biorthonormal by pairs, namely 

(m, n l th ' f ' )  = (m, filth', n ' )  = ~ ...... ,~,,,,, (5.9) 

All these functionals are tempered distributions, acting on the space 5e 2 
= ~(R2). 
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5.2. Rigged Hilbert Spaces and Time A s y m m e t r y  in Classical  
Statistical Mechanics  

With the generalized eigenfunctions just found we can construct four 
different function spaces. Nevertheless, to find time asymmetry we must 
work with (5.7) and (5.8). It has to be that way, since we must treat in a 
different way the contracting and dilating fibers, which in this case are the 
u and v variables. 

On the other hand, let us consider the temporal evolution of these 
generalized eigenfunctions of the Liouvillian. We get 

Im, ri(t)) = e(m+"+tlqm, ~), Irfi, n(t)) = e-("+n+t)qrfi, n) (5.10) 

namely, the first ones correspond to idealized states that grow exponentially 
toward the future, while the second ones represent idealized states that decay 
exponentially toward the future. These are the "statistical Gamow vectors" 
that we wanted to find. In a completely analogous way to what we did in 
Section 4, using (5.10) we find that the solution to the Liouville equation is 
p(v, u, t) = p(ve-', ue t, 0). 

We define, as in Section 4, the space of vectors that represent physical 
states when studying their evolution to the past and to the future, by 

4 +  = {p(v, u) �9 L2/p ~ ~(v) (~ ff{(u)} (5.11) 

4 _  = {p(v, u) �9 L2/p E ~{(v) (~) ~(u)} (5.12) 

Let us now consider the scalar product in L2(R 2) 

(P ,P ' )=I+_~dvI+_~dup(v ,u )p ' (v ,u )  

where the conjugation has no effect, since the functions are real. Given p+ 
e qs+, we get 

v ~ 0np+ 
p+(v, u) = ~ n! av" (0, u) 

n=O 

where the coefficients of the series are infinitely differentiable functions of  
u, which vanish outside a given interval [ - a ,  a] of the real line. Similarly, 
if p_ e 4 _ ,  then if p_ e 4_, then 

um (v, O) 
a 'p_  

p_(v, u) = m! Ou "~ 
rn=0 

where now the coefficients of the series are infinitely differentiable functions 
of v that vanish outside a different interval [ - b ,  b] of the real line. 
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Working as we did in Section 4, we find 

(p - - ,  p + )  = ~ ~ d/.,/ ...... (0 ,  f d ) U  m (12, O ) V  n 
m ,n  =O . . O V n _ 0 ! 2  m 

o~ 

(p_, p+) = ~ (p_lift, n)(m, flip+) (5.13) 
m,rt=O 

In a restricted sense (when used in an expression between a function 
p+ e ~ .  and a function p_ E q~_) we get 

c~ 

= ~ Irh, n)(m, riI (5.14) 
m,tl=O 

Considering the complex conjugate of  (5.13) we get 

c~ 

= ~ Irn, ~)(rfi, n[ (5.15) 
rt/,/7 =0 

Just as in the quantum mechanical case, the justification for the distinc- 
tion between the mathematical representations of a physical state of the 
particle when studying its future evolution and its past evolution comes from 
the fact that in the former case we want the expansion in terms of decaying 
states (5.102) to be valid and in the latter case we want the expansion in 
terms of the growing states (5.101) to be valid. 

Let us now face the problem of time reversal in classical statistical 
mechanics. Once again we shall find that the time-reversed version of a 
function in q"_ belongs in ~+ and vice versa. In this case it is easier to see, 
since time reversal in classical mechanics is just the transformation 

q ~ q ,  p ~ - p ,  t ' - .  - t  

and then the transformations for the variables v and u are 

v ~ - u ,  u ,--. - v  (5.16) 

and so, aside from sign changes, one of  the variables is transformed into the 
other. Looking at the definitions of  the spaces ~ + ,  we get that ap.+ ~ ~ = .  

6. C O N N E C T I O N  B E T W E E N  T H E  C L A S S I C A L  AND 
Q U A N T U M  CASES 

To complete our study on the introduction of a time asymmetry in 
an upside-down simple harmonic oscillator system, we will show how the 
structures defined in quantum mechanics (Section 4) and in classical statistical 
mechanics (Section 5) are connected. This connection is given by the Wigner 
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function. This function is defined from the density matrix ~ representing a 
quantum system by the formula 

= (2~) -I f+~ dy (q - y/21~Iq + y/2)e ipy Fo(q, P) (6.1) 

It gives an idea of the probability density in classical phase space if the 
system is represented by ~ (Hillery et al., 1984). In our case, we are consider- 
ing pure states, so the density matrixes are 15 = I~)(~1 and then (6.1) reads 

F~(q, p) = (2ax)-~ f +~ dy ~(q - y/2)~(q + y/2)e ipy (6.2) 

Since we have been working mostly in the Iv) and lu) representation, it 
will be useful to express the Wigner function in these variables. It can be 
shown (Balazs and Voros, 1990) that the Wigner function is invariant under 
linear canonical transformations; then we can take 

= .rr-1 f f f  dy t~(2v - y)~(y)e iu(2y-2v) F,(v, U) (6.3) 

Let us consider that 10) ~ O+ and then 0(v) ~ ~ .  If the support of 0(v) 
is [ - a ,  a], then the integration will be performed in this interval. We can 
see that the Wigner function is infinitely derivable in its two variables, since 
we can make the derivation inside the integration sign. 

Now, if we fix the u variable and look at the dependence on the v 
variable, then we can see that it vanishes if Ivl > a. In fact, given that 12v 
- yl >-- 12vt - lyl > a, Vy ~ [ - a ,  a], there is no interval in the real line 
that contributes with a nonvanishing term to the integral. 

On the other hand, let us fix the v variable. We see then that the 
Wigner function as a function of u is the Fourier transform of an infinitely 
differentiable function of bounded support, and thus is a function in ~.  We 
find then the relation 

10) ~ O+ ~ F,(v, u) E ~(v)  | ~(u)  = ~ +  (6.4) 

In a similar way, we can get the relation connecting the two spaces that 
describe the physical systems when they evolve to the past 

ItS) ~ ~_ ~ F,(v, u) ~ ~(v) | ~ (u)  = ~ _  (6.5) 

This result is not unexpected, since in our case the potential is quadratic 
in the position. Under these circumstances, the equation that rules the temporal 
evolution of the Wigner function coincides with the Liouville equation (Hil- 
lery et al., 1984), so there must be a close relationship between the structures 
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found in the classical statistical case and the density function we get from 
the quantum case. 

7. C O N C L U S I O N S  

We found that in order to give meaning to Gamow vectors, two different 
rigged Hilbert spaces must be defined: one to represent states evolving toward 
the future from initial conditions and one to represent states evolving toward 
the past from final conditions. This distinction between initial conditions and 
final conditions must be thought of  as an implementation of the global arrow 
of time of the universe and not as a manifestation of an intrinsic irreversibility 
pertaining to the system. Nevertheless, the instability is the key to the imple- 
mentation of the time asymmetry by causing the existence of Gamow vectors. 

By using this t ime-asymmetric formulation of the problem, we found 
that new "generalized expansions" can be used to make calculations in an 
easy way. For example, we found the solution of the Schrrdinger and Liouville 
equations by means of the Gamow vectors. The fact that we restrict the space 
of vectors representing physical states has no empirical consequences since 
the test function spaces in which we work are dense in the corresponding 
Hilbert space in which the conventional theory is formulated. 

Even though our model has some characteristics that make it unpleasant, 
such as a potential not bounded from below, we think that it is not so hard 
to avoid these characteristics. For instance, if we study the motion in the 
region around a maximum of a twice-differentiable potential function, then 
the approximation by a quadratic potential is valid. In particular, this happens 
when the decay from the unstable equilibrium position is studied. 

As we stated in the introduction, this same method has been applied 
in the past to some models in quantum mechanics and classical statistical 
mechanics. In the future we will try to generalize our results to more general 
models in both contexts and study the conceptual implications of the time- 
asymmetric formulation of the theory. 
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